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!a PERSPECTtE ON MULTIACCESS CHANNELS
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I. INTRODUCTION m. .

This paper is an expanded version of the Shannon lecture at

the International Symposium on Information Theory at St. Jovite,

Quebec, in September, 1983. For the last ten years there have

bee at least three bodies of research on multiaccess channels,

each proceeding in virtual isolation from the others and each

using totally different models. The objective here is to

contrast these bodies of work and to give some perspective on

what is needed to provide some unification between the areas. We

shall refer to the three areas as collision resolution,

multiaccess information theory, and spread spectrum.

The kind of communication situation that these three areas
'.'...

address is illustrated in fig. 1.1. There are multiple

transmitters and a single receiver. The received signal is

corrupted both by noise and by mutual interference between the

transmitters. Each of the transmitters is fed by an information

source, and each in format ion source generates a sequence of

messages, successive messages arriving at random instants of

time. There is usually some small amount of feedback from the

receiver to the tranmitter, but this feedback will not be our

main focus. Our maJor focus, rather, is on the interference, the

noise, and the random, or "bursty", message arrivals.

This type of model is appropriate for the up link of a

satellite network, for a radio network where there is one central

repeater, and for the traffic to the central node on a multidrop.

.............................. -. .. ."
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telephone line. It is also adequate in most respects for

studying networks where a common channel allows all nodes to hear

all other nodes. Common examples are a cable connecting many -

nodes and a fully connected radio network.

The beginning of the collision resolution approach to

multiaccess communication came in 1973 with Abramson's Aloha

network E13. The idea here was that whenever a message (or

packet) arrived at a transmitterp it would simply be transmitted,

ignoring all other transmitters in the network. If %nother

transmitter was transmitting in an overlapping interval,

interference would prevent the message from being correct ly

received, the cyclic redundancy check (CRC) would not check, no

acknowledgement would be sent, and the transmitter would try

again later; the later time would be pseudorandomly chosen to

avoid the certainty of another collision if both transmitters

waited the same time.

Over the yearsy this basic strategy has been improved,

generalized, and analyzed in many ways. A number of variations

are In widespread uses and the general topic of collision

resolution has provided many challenging and interesting problems

for research. Section 4 provides an introduction to these

problems and most of the other papers in this special issue are

devoted to the current state of these problems.

Collision resolution research has always focused on the

bursty arrivals of messages and the interference between

transmitters, but has generally ignored the noise. More

generallyp this approach ignores the underlying communication

-. -. -.----- ---.- , -, *
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process, assuming only that a message transmission is correctly

received in the absence of collision and incorrectly received

otherwise.

The multiaccess information theoretic approach to

multiaccess also started in 1973 with a coding theorem developed

by Ahlswede E23 and Liao E3. This work has also been

generalized in many ways and has opened up a separate area of

research problems. Excellent summaries and descriptions of this

research are given in r4,5,63. In this approach, the noise and

interference aspects of the multiaccess channel are appropriately

modelled, but the random arrivals of the messages are ignored.

Before proceeding, it is important to understand why

information theorists and communication system designers have

always essentially ignored random message arrivals for point to

point channels, and why this is usually unreasonable for

multiaccess channels. For a point to point channel, one normally

assumes an infinite reservoir of data to be transmitted. The

reason for this is that it is a minor practical detail to inform

the receiver when there is no data to send; furthermore there is

no other use for the channel, so potential lack of data might as
.:::

well be left out of the model. For multiaccess channels, on the

other handv most transmitters have nothing to send most of the

time, and only a few are busy. The problem is then to share the

channel between the busy users, and this is often the central

technical problem in multiaccess communication. 0.

A pure theoretician would properly point out here that

burstV message arrivals have nothing to do with coding theorems
5":'
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for multiaccess channels. The arrivals have to do with the

sources and can and should be dealt with through source coding.

E.,en without source coding, if the arrival proces-- is ergodic,

then over the arbitrarily long time intervals used in the coding

theorems, the bursty arrivals will not matter.

From a more practical point of view, the limit theorems of

information theory are interesting both because they Put an upper

limit on what is achievable and because the limit is usually not

too far from what is practically achievable. For a multiaccess

channel, however, the long time intervals required for the source

arrivals to appear smoothed out are typically far greater than

the tolerable delays. Conversely, the time interval required for

coding to be effective (ie. the time for the noise to be smoothed

out) is typically smaller than the tolerable delay. What is

needed then is an information theoretic model that somehow

precludes the possibility of imposing long delays on source

messages.

One approach to this, which is used in the collision

resolution field, is to assume an infinite number of sources, or

equivalently, that a new transmitter is created for each new

arriving message and then destroyed when the message is

successfully transmitted. The received sequence or waveform would

then be some function of noise and whatever was being transmitted

by the active transmitters. It seems that to develop

understanding in this areaq, it is necessary first to develop some

understanding of coding (as opposed to coding theorems) in a

multiaccess environment. This understanding should involve

...........



decoding in the presence of several messages being transmitted

srimkI.ltaneous l14 since otherwise the problem simply reduces to

i:onflict resolution with coding added for, reliable t rarsmission

in the absence of conflicts.

In section 2, we discuss multiaccess information theory in

more detail, and in section 3, we discuss what little is known

about coding. In both sections, the discussion is restricted to

s stems with only two sources. It appears to be important to

understand coding in this simplest context before tackling the

problem of real interest with many sources and transmitters.

The spread spectrum approach to multiaccess channels [7,83

will not be discussed in any detail in this papery but is briefly

discussed here in order to illustrate the typeos of possibilities

for multiaccess communication that lie outside the conventional

*. collision resolution and coding theory approaches. Spread

": spectrum is a mode of communication originally developed to

protect against Jamming in a military environment. The signal to

be transmitted is modulated over a much broader frequency band,

say 0 times more than necessary. Assuming that the Jammer does

not know the modulating sequence, the Jammer's signal will

essentially look like broad band noise to the signal, and the

noise seen by the receiver after demodulation will be reduced by

a factor of p.

For multiaccess communication using spread spectrum several

sources can transmit at once using different modulating

sequences, and each will look like broad band noise to the

others. If we compare this type of system to frequency

he ~* * ~ - .* I .
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multiplexing, using 0 frequency bands, it appears at first that

spread spectrum is not a very good i dea. When a number of

transmitters approaching 0 transmit together using spread

spectrum, the self noise becomes considerable., and the resulting

system is clearly inferior to FDM in terms of capacity. The

problem with FDM, however, is that if there are many more than 0

transmitters in the system, but typically many fewer than 0 with

messages to send, there is a problem allocating the frequencies

to the busy transmitters (this is the same fundamental problem

handled by the collision resolution approach). Since many times

more than 0 modulat ion sequences can be chosen that are almost

orthogonal and look like noise to each other, spread spectrum

provides an automatic solution to the problem of allocating the

channel to the busy users. This solution is not entirely

satisfactory, since one still needs collision resolution when too

many transmitters send at once, and the decoding is very complex.

It illustrates, however, a major point of this paper - namely

that a more fundamental approach and set of models are needed for

multiaccess communication than the collision resolution or

information theoretic approaches alone.

99.,. -,
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II. The Information Theoretic Approach

The coding theorems of information theory treat the question

of how much data can be reliably communicated from one point, or *

set of points, to another point, or set of points. It is tacitly

assumed that the sources have a never emptying reservoir of data

to send. Thus the theoretical results in this area do not

address the question of the delay that arises in multiple access

systems because of the random arrival times of data to be

transmitted.

The class of channels to be considered is illustrated in

Fig. 2.1. Each unit of time, the first transmitter sends a

symbol x from an alphabet X and the second transmitter sends a

symbol w from an alphabet W. There is an output alphabet Y and a

transmitter probability assignment P(yjxw) determining the

probability of receiving each YcY for each choice of inputs xaX,

and weW. The channel is memoryless in the sense that if x =

(xl,...,xN) and w = (wl,...,wN) represent the inputs to

transmitters one and two respectively over N successive time

units, then the probability of receiving y = .. ,YN > for the "6"

given xgu, is

N
P<WIMW) - I P(y Ix w (2.1)

n-1

We assume for the time being that the alphabets are all discrete, '7

but it will soon be obvious that this can be generalized in the

same way as for single input channels.

As indicated in the figurpe, there are two independent

! ~ '. % *,*.* -.***.* .... '.'..*.*.*.*. . . . . *' * * *- -- * *--* -- * .-.. :*,
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sources which are encoded independent ly into the two channel

inputs. Consider block coding with a given block length N and

with M code words, Cx 1,x 2,. ... ,x M , for transmitter 1 and L code

words (ul,...,u L  for transmitter 2; each code word is a sequence

of N channel inputs. For convenience we refer to a code with

these parameters as an (N,ML) code. The rates of the two

sources are defined as

R (in M:/H, R In L)/N (2.2)
1 2

Each N units of time, source 1 generates an integer m uniformly

distributed from 1 to M and source 2 independently generates arn

integer k uniformly distributed from 1 to L. The transmitters

send x. and wk respectively, and the corresponding channel output L

V enters the decoder and is mapped into a decoded "message" iiA.

If both A = m and A - k, the decoding is correct and otherwise a

decoding error occurs. The probability of decoding error, Pe is

minimized for each w by a maximum likelihood decoder, choosing

(AA) as integers 1S m' S M, 1 S V' S L that maximize -'.'

P(yjXM'ut'). If the maximum is non-unique, any maximizing

(m',j1 V) can be chosen with no effect on Pe. Both sets of code

words {x 1 ,...,x 1) and au1 ,. ,.,m .. are known to the decoder, but,

of course, the source outputs m,* are unknown.

The most fundamental result about these channels is the

coding theorem due to Ahlswede C23 and Liao E33. Let QI(x) and

02 (w) be probability assignments on the X and W input alphabets

res"etively. Define the achievable rate region R as the convex

hull of the set of rate pairs (RIR 2 ) which, for some choice of

- -;-;1-
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assignments Q1 0.,2, satisfy each of the inequalities:

R1  R2  ":f-- XW;Y> =  <X r (I.) " " <,j w.<) 1'. n
R " 2 1. 2 in

x,w,y P(y) (2.3)

.3
P(y xw)

0 S R2  I<xYlW ) Q1 (X)Q2 w)P( yxw)ln

xy w, y P(y1x) (2.5)

where P<y) l I, Q Cx )Q2 Cw)P(Ylxw)g P<ylw) = l, Q1 (x)Pcyjxw), and

P(ylx) 1 W Q2 Cw)P-yxw).

The region bounded by <2.3)-(2.5) for a given Q,Q 2 is shown

in fig. 2.2. It is easy to see that the break points of the

boundary occur at R, ICX;YjW), R2 -ICW;Y) and at R, -(;~

R2 - iIWjYx>. In general I<X;Yk)w) C<xJY) with equality iff x

and w are conditionally independent given y.

Theorem 2.1 (ShlswedeLiao)' For each c > 0, 6 > 0, (R1 ,R2 )c-R,

there exists an N0 such that for all N Z No, M S exp NCRi-6), L S

exp NC<2 -6), there exists an (NM,L) code with P0 5 c. For each

6 > 0 and PR1 3l 2 )R, there exists e > 0 such that Pe a" for all

CNML) codes with M Z exp NCR1 +6), L Z exp NCR2+6).

In effect, the theorem says that reliable communication is

possible for source rates in the interior of the achievable

o - - - w- oundvr- o-r- r -- R X YI ) R.2 "..I.. ..... .... d t R 1 -I( Y , 
! "
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region and is impossible outside of the achievable region.

Slepian and ,olf E9 later generalized this result, byj corsidering

a third source that Could be encoded Joint ly for both

transmitters. They also used a random coding argument w.hich

showed both that Pe can be made to decrease exponenti ally with N

and also, in a sense, that most codes have this behavior. Since

this random coding argument is a very simple extension of random

coding for single input channels and it gives a great deal of

insight into coding for multiple access channels, we now go,

through the argument for the two source case.

Let QI(x) and Q 2 (w) be probability assignments on the X and

W alphabets respectively and consider an ensemble of (N,M, L)

codes where each code word x.9 1 5 m : M is independent ly

selected according to the probability assignment

H
Q 1 (x) = U Ql(Xn)9 x = (Xlx2P...XN) (2.6)

n-1

and each code word wkv 1 .k L is independently selected

according to -

NQ2(u) = iT Q(wn), u w ,  wN) (2.7>
02 n-I 2 (Wn> = (w1, ..., $N)27

For each code in the ensemble, the decoder uses maximum

likelihood decodingg and we want to upper bound the expected

value of P for this ensemble. Define an error event to be of

twpe 1 if the decoded pair (,mA) and the original source pair

..................- --------------....................
S. - .:
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(m t) satisfy m'# m, A = A. Sn error event is type 2 if =m

and l . , and is of type 3 if M # m and A k &. Let Pei' 1 : i S L

3, be the probability, over the ensemble, of a type i error

event; obviously e = Pel + Pe2 +

Consider Pe3 first. Note that when (m,t) enters the

encoder, there are M-1 choices for a and (L-i> choices for A, or

CM-1)(L-1) pairs, that yield a type 3 error. For each such pair

(ciA>, the code word pair x%, *A is statistically independent of

"-' x Wit over the ensemble of codes. Thus, regarding (x,u) as a

combined input to a single input channel with input alphabet XxW,

we can directly apply the coding theorem, theorem 5.6.1 of £10],

which asserts* that for all p, 0 5 p S 1,

P3 [ Q 1 (x>Q 2(w>P(wlx) (2.8)

W X.M

*The statement of thoerem 5.6.1 of (10] assumes that all code

words are chosen independently, but the proof only uses pairwise

independence between the transmitted word ((xw) in the case

here) and etch other word ((XU) M # m, A 0 k for the case

here).

V -I-
j, - .
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Using the product form of QI-" Q2. and P, Eqs. (2.1, 2.6,

2.7), and the definition of rates in (2.2), this simplifies to-

P S expEPN(R +R )3 Q (x)Q ()~~w*3 1 2 1~~ 2~.)~~w 1P + 29,V <q 2.9) '

Next consider Pe 1, the probability that 0 # m and .k = W.. We

first condition this probability on a particular message .k

entering the second encoder, and a choice of code with a

particular wo transmitted at the second input. Given wk, we can

view the channel as a single input channel with input xm and with

transition probabilities P(WlxM...

A maximum likelihood decoder for that single input channel

will make an error (or be ambiguous) if

P(wlxw,u,) Z P(wlx u) for at least one m' 0 m. (2.10)
m m

Since this event must occur whenever a type 1 error occurs, the

probability of a type 1 error, conditional on wk is upperbounded

by the probability of error or ambiguity on the above single

input channel. Using theorem 5.6.1 of E103 again for this single

input channel, we have, for any P, 0 S p S 1,

;;- -.,

I. . , , . - . . . - .. , . ., . - - - . - - . - .. . . . , . , , . . , ., , . ' , ., ..' .i - . , ' .., .- -, L
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[1,"( 1+0 1+p

PIType I errorlwj _5 (M-l) ' 2 So lX)WP("jx ) .2.11:

Taking the expected value of (2.11) over aX and then using the

product form of 0190 2 and P again,

P0 1 5 exPNRI] 3[ (w " Q1 <x)P(ylxw]-
.I W X (2.12)

Applying the same argument to type 2 errors, for all P, 0 5 F. 5

1,

P 2 
:5 exm[PHR2 ]3 <x) 82 (w)P(y

< xw) : 1+p N (2.13

Putting (2.9), (2.12), (2.13) in a form to emphasize the

exponential dependence on N, we have:

Theorem 2.2 (Slepian-Wolf)g Consider an ensemble of (N,M,L>

codes in which Cxj, .. ,x,.0 and Cwl,..., q) are independently

chosen according to (2.6) and (2.7) for a given probability b

assignment Q(xw> Q 1 (x)Q 2(w). Then the expected error

probability over the ensemble satisfies

P P P + P (2.14)
*I + e2 3

-- ~-- --.-. -.-- -. . . . . . . . . . . . . . . . .

'% , .*- ... -.- * . . . . . . . . . . . . . . . . . . . . . . .
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Pei S exp -NE-PR i + Ei(P,-P.)) for all P, 0 5 p 5 1,
all i = 1,2,3. (2.15>-

R In M n L RnL
R1 = H ' 2 N ' R3  R1 +-A2  (2.16)

F 1/CitP)1 1-6p (2.17)
Eol(P,Q) = -ln Q2Cw) , 1(X)P(yI xw)

[ -in w Qi x)1I+P) + (2.18).
Eo2(P,Q> =-I l(X) Q2(w>P<ylxw> -:'

o22 yxw

[ ~ ~1/ l+P)] I+P (2.19) .

Eo3Cp,Q) = -In Q , Cx)Q2(w)P(lxw>
yJ XPW

The behavior of the expressions Eo(P,Q), i = 1,2,3, is the

same as for the single input case. In particular let Ii, i - Li

1,2,3, be given by

1 2IXIYIW), I I(WIYIX), 13 - I(XWIY) (2.20)

as defined in (2.3)-<2.5). Then if I i . 0, the function Eoi<,Q>

is convex no strictly increasing in P, and positive for p > 0.

Furthermore, the maximum of EoiCPQ)-PRi over 0 S p S 1 is

positive and decreasing in Ri for 0 S Ri < 1i (see theorem

rcrb .--- w- .-- ~ - * ~ -*-
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and 5.6.4 of [10] for proofs>. Theorem 2.2 then asserts that if

R < I, i = 1,2,3, then P. decreases exponentially with

in~creasingq N.

There are two questions we want to explore in the rest of

this section. First, how tight is this bound on error

probability, and second, what indication does it give of the

practicality of coding for multiple access channels. To explore

the question of tightness, we first interpret the terms Pei in

f'2.14).

Pei, as upper bounded in (2.12), is the error probability

that would result if a "genie" informed the decoder about the

second source message k. This genie aided error probability is

alo clearly a lower bound to Peg so that when type 1 errors are

the predominant cause of errors, the genie aided error

probability closely approximates P.• Similarly, the bound for

P is the conventional single input random coding bound for a

single code of rate RI+R 2 using combined inputs with probability

QI(x)Q2 (w). Our conclusion, then, is that the bound on Pe in

theorem 5.2 is quite tight for the given ensemble of codes. The

problem, as we shall soon see through a set of examplesq is that

the best codes are not always representative of the ensembles.

Example I1 The Collision Channel.

Let X = C0,1,... K) and W = COI,...,K). We regard 0 as an

"idle" input, and if 0 is the x input for a given w input, then y

is the pair (0,w). Similarly if w-O, the output is (x, ). .'7

Finally if x 0 0 and w 0 0, the output y is a special symbol e

representing "collision". This is shown in fig. 2.3 for K-2.
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First consider the achievable rate region. For any given

Q00 (x) w)Q2 .u) it is easy to see that, conditional on the out put y,

the two inputs are sta.t ist i cal , independent. thus I,:'; ' w) =

I(X;Y) and the set of rates satisfy-iing (2.3)-(2.5) for-ms a

rectangle. le ne-.-.t want to find the set of rates so that (2.3)-

(2.5) is satisfied for some choice of 019Q2. It should be clear

from symmetry that Q1 (x) should be constant for all x > 0 and

Q2(w) should be constant for w > 0; thus we need only consider

the union of rates satisfying (2.3)-C2.5) over all choices of

Qi(s) and Q2(0). Fig. 2.4 shows the resulting union; for all K Z

8, the set of rates is non-convex (the potential non-convexity

for multi-access channels was first shown by E113). The convex

hull of this union region is the set of achievable rates of

theorem 2.l. Theorem 2.2 assures us that exponentially decaying

error, rates are achievable in the interior of the union region.

Any given rate pair in the interior of the convex hull is on a

straight line between two pairs of rates each in the interior of

the union region. By time division multiplexing between codes for

these rate pairs, reliable communication is achieved for the

given rate pair. Thus theorem 2.2 establishes the positive half

of theorem 2.1.

It is rather surprising at first that the union region is

non-convex. We note that I(XW;Y) is a convex n function of Ql(x)

and a convex n function of Q2(x), but is non-convex as a joint

function of 01 and 02. It is also convex as a function of

Q(x,w), but the set of probability vectors Q(x,w) for which

Q(xw) Q) fo some QIQ2 is a non convex region. Thus
I .4

.-o
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.o g .cp '  a° 1 ,( ) Q( 2 )) = XEo (p,Q ),+ (1-":Eoi (pp( 2 )) . .5

Nc examples have been found where this approach enlarges the

regions R defined above; this approach is sufficient, however,

to achieve exponential decays in P0 for all rate pairs in the

-. interior of R.

Another approach is to consider random coding ensembles in

which successive letters are statistically dependent. For the

collision channel, for example, suppose the block is divided into

sub-blocks of four letters each. Within each sub-block,

(x 1 ,x 2 ,x 3 ,x 4 ) has either the form (x,x,0)0> or the form

c0,e,x,x), each with equal probability. Similarly, (w1 ,w2,w3 ,w 4 )

has either the form (w,o~w,8) or COw,0,w) with equal

probability. Finally, x and w are independently and equiprobably

chosen from C1,2,...,K). With this arrangement, each sub-block

is equivalent to a noiseless x channel with 2K inputs and a

noiseless w channel with 2K inputs (this example was suggested by

.. Massey's coding scheme for unsynchronized collision channels

C143). The resulting random coding exponent is clearly larger

than that where the successive letters are independent with the

same marginal probabilities.

.. The purpose of the above discussion was not to find the

largest exponents achievable for the collision channelp but

-* rather to illustrate why error exponents are far more complicated

* for multiaccess channels than for single input channels. It also

illustrates why there is no simple sphere packing lower bound to

P for multiaccess channels that yields the same error exponents

,T: :.-.
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as the random coding bound. Arutyunyan 115] has developed a type

of sphere Packing bound for multiaccess channels, but it is

somewhat loose since it. does not account for the separation of

the two encoders for the type 3 errors.

Example 2: Additive White Gaussian Noise Channel (AWGN)

We now turn to another example of somewhat greater practical

importance where the random coding exponents work out more

nicely. Suppose the X, W, and Y alphabets are each the set of

real numbers, and the output y is given by

y = x + w + z (2.26:)

where z is a zero mean Gaussian random variable of variance 2r

independent of x and w. The x input and w input are each

constrained to have mean square values at most S 1 and S2

respectively. if we consider the channel as a cascade of a

noiseless channel adding x and w and then a single input Gaussian

channel, we see that I(XW;Y) is at most the capacity of the

single input channel with the input constrained to energy SI+S 2 -

Thus

1 r S + S2

I(XWIY)> S 1 le 1 + 2 (2.27)

It is also easy to see that I(X;YIW) is the average mutual

information between x and y in the absence of w. Thus
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I <X;YW) 1log "" + "2.2$
2 o9 1 + '2 J.'-'-

I(WY'IX) S:E loci 1 +( 2.29)22

These inequalities are satisfied for all independent

distributions on x and w and are all satisfied with equality if x

and w are independent zero mean Gaussian with variances S 1 and S2

respectively. Thus the rate region for which C2.3)-<2.5) are

satisfied for some independent x and w distribution is - -

RI+ R 2  lo[g 1 + (2.30)

0 S, R 5 1 lo ,g I + i -;.-
B 1 2 2 i~ui ] <2.31)

B S R2  S log I + - (2.32)2 2-!...

Sin*e this region is convex already, it is the achievable rate

region R.

This region R is sketched in fig. 2.5 for various values of

signal to noise ratios A = S/a 2  = or the case where

S 1 - 2 . Note that the region is almost rectangular for small A

and almost triangular for large A. Note that if one uses TDM

between a code for x and a code for w9 then the achievable rates

are limited to the region bounded bw the straight line between

vJ,r- .-r-.Y..- . --. r--r. ----. .. .. . .-. -... . ....... .-.k.-._:;:............... . ,. ., .. _.... - -. , .. .. _ . ._.;. .. :.,.-. . ... .............
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the axis intercepts of the boundary of R (see fig. 2.5). Thus

for large A, TDM is almost as good as the best. coding, ,..hereas

for small A, TDM is quite inferior. The reason for this can be

seen most clearly for the case R I = R2 . Alternating betweer

CR 1 ,) and (0,R 2 ) then wastes half the available power, since (by

our model), the first transmitter stays within its power

limitation while transmitting. Losing half the available power

loses only a small fraction of the available capacity for large A

whereas, for small A, a large fraction is lost. This sugge-.sts

using frequency division multiplexing, achieving the same

simplicity as TDM, but being able to use all the available power

(see fig. 2.6).

Next consider the random coding exponent for these channels.

Using the above Gaussian distribution for x and w, we can easily

calculate Eoi(PQ> from <2.17)-(2.19>, repl.acing sums with

integrals. The result is

E0 1CP>Q) = -< n + (2.33)
2 7 l+p)

where S3 S 1 + 2.. Letting Ai - Si/S2, we can maximize

CEo iCPQ>-PRiJ over p to get the parametric equations

----:-rv;?-~~g ..-.. . . . .- .I
~ ~;~ . - -- -.. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
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2
p. A.

E (R_ 1:1

rrA

1 I 1 +-= ~ 2(1+pi><l+P.+A.:, -.
nil -i

1 1 1 1 C(2.:34)
t r

For rates lower than those where pi = 1,

rA

S-

E (R i) -- 1In I + - R.ri 1 2 I 2]
A. A.'L;

for R. S - ln[1 + t. ] (2.35)2o R 2 -2 4(2+A...,..

As in (2.22) and (2.23), the random coding exponent Er(R 1 ,R2) is

the minimum of Eri(Ri) over i - 1,2,3. The region R divides into

three subregions as shown in fig. 2.7 where E CRi ) for each i is

dominant. As the rates decrease, the error probability of type 3

errors decreases more rapidly than that for type 1 and 2 errors,

so that for small rates the bound is dominated by errors in

source 1 or 2 but not both.

For a single input additive Gaussian noice channel, choosing

a coding ensemble with the Gaussian distribution is not quite the

best thing to do. The best distribution results from a shell

constraint; that is, code words are chosen with a Gaussian

distribution conditioal on the resulting word having an energy

, very close to NSi. This distribution (see section 7.4, [110)

yields the same exponent to Pe as the sphere packing bound for

rates sufficiently close to capacity.

-7 =I.,7,
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For a multiaccess channel, it seems reasonable to again

consider a random coding ensernble using a shell constrainrt or,

each set of code words. From the genie interpretat ion of type 1

and 2 errors! we see that Pel is upperbounded by the probabi lity

of error for the first set of code words with the additiv.,e

Gaussian noise but without the second set of code words. Thus,

for i=1,2, we have Pei a aiN exP[-NEri(Ri)J- where from section

" 7.4 of [10J, ai is a constant and Eri(Ri) is given by:

Ai-i +1°
E .(R.) = -L) 2.36ri J1 2p i  2 i 1

1 2

for 'lfn l1/ 4 )( 2 +A+ 4 ) S A. S l In(l+A.) (2.37)

where

- l 1 + i_ 1 (2.38

= exp(2 R i) (2.39)

For R i less than the lower limit in (2.37),

A. A. 'CR) 1 0 + A.1)3 R. (2.40)

ri I i 2 2 1ni - 2 -

-!-

o°*O - .•• • % • . - , , , . • . - . • - . % °•• • . ° , . . . - , .- .- , . .°*.7-. . ,.- . , - ,"•
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Ao

_ 1+- + 1+-1 2..4.1 . )

* t .

For rates satisfying (2.34), the sphere packing bound for the .

single input channel gives a lower bound

el ,i 1. IPe i XP -NL[E riC i + oN)4; il,

for all codes where o(N) approaches 0 with increasing N.

For type 3 errors, the situation is less simple since the

combined code words x + w are not constrained. In fact, if,

after constraining x to have energy NS 1 and w to have energy NS 2,

we then constrained x+w to have energy N<S1 +S2 ), e would then be

constraining the code words of the two codes to be orthogonal,

which is just a generalized version of the frequency division

multiplexing discussed previously.

We now develop a bound on Pe3 using a shell constraint on

the code words xa and u. Choose each x independently using the

density Q 1
<x) and each w using the density Q2 (w) where

2N -x2 ."::.,
Q.(x) V (x) 1 rXp

1 1 n1 2SiJ (2.42>

F211

'S.

5--

. .. . . .. . . . . . . . . .
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0; o t her i s e,.

where & is an arbitrary. posit i y, ru rber, and vi is a rcrra 1 i z i ng

cosrtant to make ix) integrate to 1. Subst ituting (2.40) for

Q (1 x) and Q2 (w) into (2.8), replacing surfs with integrals, arid

upper bounding

N
i(x) S expEr6 + > r.(x -S.)3 (2.44)-1 ' n i "

For any r i - O i = 1,2, we find that (2.8) breaks into a product

form (as in section 7.3 of £10)). After some tedious

integrationy we gets for any p, 0 S p $ 1,

.xpC6(r +r) >3
21 11+oJ ' expE-N(E 3 <, 3 r)-pR3 ]  (2.45)

L l+2  r. A

3 3 r+P = 2 1 2

(2.46)

8. - (1+p)C1-2rS) ( 2.47)

. . . . .. . . . . . . . . .

. . . . .-
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The first term in (2.45) is proportional to N I + P for arny

given choice of r, l r and 6, so we simply bound it by aN 2 for

some suitable a. The exponent can be optimized or..,er rl, r.

(or equivalently over p, 81, 82 for 0 5 p S7_ 1, 0 5 8i 5 1+p).

For the important case where A1 = A2 , the optimization can be

carried out explicitly. Here by symmetry, the optimal 81 and 82

are equal, and such a solution is also validp but not optimal,

for all Arind A2 . Using 8 fo- 81 and 82 -rd A forA + A2,

ee AE= (l+P)ln(f-- - 8 + 2 n(1 + E) (2.48)

Optimizing the exponent, we find that for

1In[ A e2

2n <(1 - + 1:- + - )] - R S ln(l+A), (2.49..

E 3 (R3 ) (1 + p- 8) + In <+ (2.50)

S- +-A + 1 (I+p)2+A2+2A (2.51)

,.
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= [+I ~++1: 1~ (2.52)
2 A-- " --"

f= exp<2R.) (2.53)

For R 3 less than the lower bound in (2.49),

E.3R3* = 21t n - 8- 11 + ln(l + R. - ( (2.54.r3' 322 3

I A + ln< A 2 +2A+4) ( 2.55)2 2

This exponent lies roughly half way between the previously

derived exponent without a shell constraint and the exponent with

a shell constraint that would result for a single input Gaussian

channel with signal to noise ratio A (i.e. that given by (2.36)-

(2.41).

When we take the minimum of the three exponents Eri(Ri) for

i -- 12,3, we again find that the achievable region R breaks into

3 subregions, one where each bound is dominant; the regions look

the same as in fig 2.7, although numerically they are somewhat

different. We now know, however, that whenever the rate pair

(RIPR 2 ) is in Rl(or R 2) and R, (or R2 ) is above the critical rate

of (2.36), then Er(RIR 2) is indeed the exponent for optimal
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codes. For the symmetric case where R= R2-, the region R..

1vanishes for small enough R1  R~ arnd i f the po'int. w~here Rs

k.anishes is above the critical rate for R, and R-, then the

'Pti MUM ex:ponrent. i s givyen by (2. 37)-(2. 39) bet weer the poinit

where R. , vanishes and the crit ical rate. This phenomer occurs

whenever the combined signal to noise ratio A3 is below about 3.



3:. Cod irnq Techr i ques

I.dhile the theoretical de,.,elopmert cf cc, dir, t. heirer s

forr m,_iQ o 1i ess channrels is quite ..ad,..r nced, ,very lit t. le has been

done with respect to general techniques for mult iaccess coding.

As pointed out in the introduction, what is needed is a coding

technonology applicable where there are a large set of

t.ransmitters but only a small subset simultaneously use the

channel while the others are idle. Here, however, we restrict

oUrse !ve 1,e t o t he i mp !er prob 1 em of t he t,,.,o i np,.i, rhanre , . .:

2. 1 where both sources always have something to send.

First we observe that the error probability bounds

evaluated in the last section apply equally well to ensembles of

linear codes. The argument for this is the same as in section

6.2 [I0]. In general, binary linear codes can be generated for

each transmitter, and sub-blocks of these binary digits can be

mapped many to one into the channel input alphabet., thus

achieving any desired relative frequency of utilization of the -

various input letters.

Random coding bounds for convolutional codes have also

been generalized from single input channels to multiaccess

channels E16] with the same type of large exponent as occurs for

the single input channel. Thus there is no problem generating

good codes, either block or convolutional. The problem, as with

single input channels, is with decoding.

Before discussing decoding, a brief discussion of

channel modelling is in order. The discrete t..ime channels dear

to the hearts of information theorists implicitly assume that
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carrier phase and sampling time in physical channels are part of

the channel model. Furthermore, ideal performance of these

elements is usually assumed. For single input channels this

separation is usually perfectly reasonable, but for multiaccess

channels it is often questionable. For example, for the AWGN

multiaccess channel, it is well known [173,[183 that feedback can

increase the achievable R1 +R2 beyond that achievable by a single

source of rate R a+R2 and energy constraint S1+82. In other

words, the individual transmitters are limited to SI and S2

respectively, but the signal energy at the receiver exceeds

S1 +S 2. This means that the two transmitting antennas are acting

as a phased array and that the additional receiver energy comes

from antenna gain (along with very clever feedback coordination).

While this is not impossible, it is certainly not a conventional

situation.

Typically we should expect the received carrier phase

from the one transmitter to be roughly independent of that from

the other. Approximate baud synchronism between the transmitters

is slightly more reasonable than phase synchronism and

approximate block synchronism is eminently reasonable with only

marginal feedback communication.

There appears to be little of a general nature that can

be said about the effect of asynchronism between the sources at

the phase and baud level. For the specific case of an AWGN

channel, however, the situation is much simpler. Using a

Gaussian ensemble (with or without a shell constraint) to .-

generate code words, the discrete time code words of the last

......................

- - - ..- - -..- °.. - , 4 .-..* - .- .- .....t-. -- .. . ' ,,. - •. -. --.... -. - ...- .. ... ,.. .,_.-..,. '. - ,... -..--.. .-...... .'. ... , .
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section car, be considered as time samples over the block period

o f a narro.., band stat. i onar,y G.-aussi an process ..' it h a it ernat e

lett.er.s reFresenting in. phase -arid out of phase compoinents. Thus

for a given set of randomly chosen waveform code words, a change

of receiv..er carrier phase and sample time will change the

discrete time code but will not change the ensemble statistics

(aside from some end effects at the ends of the block which we

ignore). The decoder must know the relative carrier phase and

sample time for each of the two transmitters but there is no need

for the two to be synchronized together. In, summary, the

discrete time AWGN multiaccess model of the last section is

adequate for non-feedback communication maintaining only block

synchronization, but is only adequate for feedback techniques in

the rare case where the two transmitters are phase and baud

synchronized.

The problem of lack of block synchronization for

multiaccess channels is somewhat better understood than that of

phase and baud synchronization. Assuming a discrete time model

(i.e. assuming away the phase and baud synchronization problem),

it has been shown [19] that with a bounded amount of uncertainty

in timing between the transmitters, the feasible region R is the

same as with perfect synchronization. Essentially one uses a

coding constraint so large that the timing uncertainty becomes L

negligible. For complete uncertainty in timing, on the other

hand, it has been shown [203 that the feasible region is the

union region of fig. 2.4 rather than its convex hull. The

essential idea here is that time sharing cannot be used in the

L
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total absence of relative timing between the trarsmitters.

Having cautioned the reader about. the modeling problems

inherent, in a discrete time memoryless model of mult. iaccess

channels, we now return to this model to see what car, be said

about coding.

First, there is a fairly simple general approach that

can reduce the decoding problem to several single source decoding

problemxs. First suppose that (R1,R 2 ) satisfies R1 < I(V'YjW, R2 .

< I(W;Y) for some assignment Ql(x), Q2 (w). Over the ensemble of

codes using Q ,Q29 a decoder can decode the w code word by

ignoring the x code word and assuming a single input channel with

transition probabilities P(ylw) = 0× Ql(x)P(ylxw). Over the

ensemble of codes for the first encoderg this is precisely the

set of transition probabilities from w to y. Thus a "good"

decoder for a single input channel can decode w reliably. Given

w, another decoder for a single input channel can decode x using

P(ynlxnwn). This second decoding is somewhat unconventinal for

single inputs in that the transition probabilities depend on wn

and thus vary with n, but a number of decoding techniques such as

sequential decoding and Viterbi decoding can deal with this

situation.

As can be seen from fig. 3.1, any (R1 R2 ) in the

interior of the achievable region of (2.3)-(2.5) for a given

Q19'02 can be represented as a convex combination of two rate

pairs, one of which, (RIRI), satisfies

1-2
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, .()< (.3.2)

a nd the other of which sa tisfies ,

.* o

R" < I(X;Y); R < (( I>,3.2)

Codes for etch of these rate pairs can be decoded by

the two step procedure described above and (R1,R 2 ) can be decoded

by time sharing between two such codes.

Finally, any point in the interior of the achievable

rate region is a convex combination of two rate pairs, one of

which satisfies (2.3)-(2.5) with strict inequality for some Q102

and the other for some other QTQ9. Thus an arbitrary point in

the interior of R can be reliably decoded by time sharing between

at most 4 codess two of which use rates satisfying (3.1), (3.2)

respectively for Q102 and the other two of which satisfy (3.1),

(3.2) for 1 2'

This approach is not entirely satisfactory for two

reasons. The first is that the random coding exponents for error

probability in this approach are often much smaller than those

for Joint decoding of the two code words together. If we use

error exponents as a crude measure of decoding complexityp this

indicates that the price of avoiding joint decoding is much

Seater complexity for the single input decoders. Note, however,

that error exponents can sometimes be misleading as a guide to

.7.1
**.,-.-..'..*-..- *4 .......................... *
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decoding complexity. For example, the random coding exponent for

a noiseless binarys channel is riot large, whereas coding and

decoding are completely trivial.

The other objection to this approach is that it fails

to provide much insight into the question of joint decoding of

several sources. It certainly does not generalize to the use of

a small but unknown subset of a large set of transmitters.

A second, simpler but less general, approach is to

decode the code words from each transmitter independent l y

regarding the other as noise. From fig. 2.5, it is seen that for

the AWCN channel with small signal to noise ratio, the achievable

rate region is almost rectangular. Analytically ICX;Y)

(1/2)ln[l + A 1 /CI+A 2 )3 which is close to I(X;YIW) = (l/2)ln[l+A 1

when A2 is small. In this case, the error exponent for

individual decoding is almost the same as for joint decoding.

This second approach can be carried one step further by

choosing all the code words for transmitter 1 to be orthogonal or

almost orthogonal to all those for transmitter 2. This is the

approach taken in frequency division multiplexing, and has the

added advantage of largely eliminating the problems caused by

relative differences in carrier phase and baud timing between the

transmitters.

This approach is also used in spread spectrum

communication. This has the added advantage of allowing a large

number of transmitters, all of whose code sets are approximately

orthogonal to all the other code sets. When only a subset of the

transmitters transmit at one time, the interference from the

-cc-:K. *.-.°



other transmitters is reduced and the individual code words ca r

be -e..ccessfulln. decoded. This same approach has been used by

Cohen et al [21) ard Sormrer [22) in the -'onte:...t of rult iaccess

pu lse position modulation.

For an arbitrary discrete time memory less mult iacceSs

channel, perhaps with more than two transmitters, one car - -

similarly investigate ways to choose code word sets for the

individual transmitters in such a way that they are mutuall nor,n

interfering (more pi ecisely, so that they can be individually

decoded with small error probability). Time sharing within a

code word is one possibility, but depending on the channel, other

possibilities might be preferable, as we have seen for the AWN.

channel. A more difficult related problem is to choose the code

word sets in such a way as to maintain the non-interference

property in the presence of lack of baud synchronism between the

transmitters. We have seen that this can be done for the AWN

channel, and Massey's coding scheme £14) for the asynchronous

collision channel also achieves this objective; at present,

however, no approaches are known for general discrete time

memo ryless channels.

As a third approach to decoding, consider true joint

decoding of the two code words. I will not consider algebraic

decoding techniques here since an algebraic structure must be

matched in some sense to the channel characteristics and I am not

aware of any interesting examples of general algebraic approaches

for multiaccess channels. Viterbi decoding of convolutional

* codes is another possibility, but it does not appear very
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promising as a joint decoding technique. The problem is that the

decoder should track all possible states of both encoders, which

leads to a combined number of states which is the product of the

indi.,idual numbers of states. With more than two transmitters,

the problem is even worse. *

Finallyq sequential decoding appears to be a general

approach to multiaccess joint decoding and it has beer shown 233

that lack of block synchronization is not a serious impediment to

its operation. Unfortunately, at this time, it is not clear how

to make sequential decoding work for a multiaccess channel. To

explain the difficulty, recall that sequential decoding is a

search procedure that hypothesizes the encoded sequence up to a

given point and either proceeds forward by extending the encoded

sequence or searches backward depending on the value of a

"metric" that stochastically drifts upward when the decoder is

following the actual uncoded sequence and drifts downward when

the decoder gets off the track.

The problem, now, is that the decoder can go off the

track in three ways, corresponding to the three types of errors

in section 2. Unfortunately the appropriate metric to use S

depends on the type of error being made, and this knowledge is

unknown to the decoder. It appears that no single metric is

adequate for sequential decoding to work on a general discrete

memoryless multiaccess channel with bounded expected computation

up to the normal computational cut off rate. It might be

possible to develop a sequential decoding algorithm that utilizes

several metrics simultaneously, but so far no such algorithm has

. .. . . . . .. ...



beer, dev.ised.

Aro..ther fur,darnent.Ll Froblem .,.,ith se,.ert i-l dec'odinq -

has- r-ecert1 y been disco,..,ered b. Ari :an C-724). Or i kar :o ns i ders a

ruItiaccess binary erasure char,nel where.v = .0, 1:. W = -0[, 11 and

Y = (010), .1, ) (1,0), (1,1), (e.,e.). .ith..h probabilit-1 I- -,'.

for some : > 0, Y = (x,w), whereas with probability s,

independent of the input, y = (e.,e). In effect we have two

erasure channels with perfectly correlated erasures. Using

equiprobable inputs for each transmitter, we can formally4

calculate the corputational cutoff region R for a joint
comp

decoder as

01 -n
R E (1,Q) - In (3.4)

LJ

R 3  S E 0 3 (1,) = In (3.5)

we note that

-2 In > n1+3c] al C, 0 < C <12 43 •-.6

Thus for = R 2 1 (3.5) is the active constraint., and even

without any of the metric problemsdiscussed above, (3.5) limits

the achievable rate with joint sequential decoding. However

using separate sequential decoders for the two tran~smnitters and

ignoring the erasure correlation, we can achieve the higher rates

of (3.3) and (3.4).

.j. .,. ..... :-'".. --,,'.. ...'-. .-.. . _. . . ,. %" . . ..-. " . . ... ... - . .. .- > , .. . :.• : i- . . . ..•i- . . -.- ,
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To make the situation worse, we see that - lnE<1+3..'4] is

-. 1 so the comput at i Carla 1 cut off rate c, f a si r,o 1 e input qiaternart

ersu:LStr-_ channel. However, by regarding the inputs to the

quaternary channel as two binary digits ard using separate

convolutional encoders and decoders f or the two digits, we can

again achieve the higher rates. The difficulty here does not

reside in the particular search algorithm being used. Over the

ensemble of convolutional codes for the quaternary input (or

pairs of codes for binary inputs), the expected number of

potential encoded sequences (or pairs of sequences) at length N

which are as likely as the transmitted sequence (or pair) is

exponentially increasing in N for any combined rate in excess of

-ln[(1+30)/4. The conclusion that one must reach is that Rcomp .

is not really a fundamental parameter of communication. This

Same example, in the context of the photon channel, has been

discussed by Massey £253 and Humblet E263.

Summarizing the previous approaches to decoding, we see

that much more research is necessary before any cohesive body of

knowledge about coding and decoding for multiaccess channels will

exist.

. a . . * . - a- -- - - - - - - - - - - - - - - - - - --

. a . . a a a. . . . . . . . - .... a
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4) COLLISION RESOLUTION

As briefly discussed in the introduction, the collision -

r-esolut ion approach to rnult iaccess communicat ion focuses on

al locating the multiaccess channel among a large set of users at

different transmitting sites. It has the weakness, however, of

essentially ignoring the communication aspects of the problems.

We start by a set of assumptions that limit the class of systems L

we will be considering.

a> Slotted System: We assume that each message (packet) to be

transmitted requires one time unit (a slot) for transmission. ,-2.

All transmitters are synchronized so that all transmissions start

at an integer time and end before the next integer time. Such

synchronization is usually not too difficult given stable clocks

and given a small amount of timing feedback from the receiver.

In case of propagation delays, the timing is relative to the

receiver, so that each packet starts to arrive at the receiver at

an integer time. Naturally some guard space is required in

practice, but we neglect that here. Note that this assumption

precludes both the possibility of sending short packets to make ."-

reservations for long packets and of carrier sensingo which we

discuss later. Such systems can be understood much more simply

after this basic model is understood.

b) Collision or Perfect Receiption: We assume that if more than

one transmitter sends a packet in a slot (the time from one

integer to the next), then there is a collision and the receiver

gets no information about the contents or origins of the

transmitted packets. If Just one transmitter sends a packet in a

. . . . . . .- . .
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slot, it is received with no errors. This is the assumption that
~ ..

remo.jes the noise a rd communication aspects from the problem; it

allows collision resolution to be studied in the simplest. context

but also severely limits the class of strategies and tradeoffs

that can be considered.

c) Infinite Set of Transmitters: Assume that each arriving

packet arrives at a transmitter that has never previously

received a packet. This precludes queueing at individual

transmitters and precludes the use of TDM. This is an

unreasonable assumption from a practical point of view, but note

that given any algorithm determining when the transmitters send

packets, a finite set of transmitters can use the same algorithm

regarding each packet arrival as corresponding to a separate

conceptual transmitter. In this case, a real transmitter will

sometimes send multiple packets at the same timep causing a

collision. This shows, first that assumption c) provides a worst

case bound on a finite set of transmitters and secondp that the

difference is only significant when two or more packets are

waiting at the same transmitter. Collision resolution algorithms

are primarily useful to reduce delay over what would be achieved

with TDM, so in this low delay regiony having multiple packets at

a transmitter should be relatively rare and the performance with

a finite set of transmitters shuld be well approximated by the

performance with an infinite set. The major advantage of the

infinite set assumption is that we can use the maximum throughput

of an algorithm as a qualitative measure of the goodness of the

algorithm without allowing for the somewhat incidental-"

S.* -. °° . . . . .. . ., o A .. ° •. . . & ..



............ -. I

-4.3- i ',.

improvements of throughput that could be achieved when

transmitters have multiple packets to send.

d:, Poisson Arrivals: Assume that new packet arrivals are

Poisson at an overall rate X. Given assumption 3, no other

arrival process would make much sense.

e) 09 1 c Immediate Feedback: Assume that by the end of each

slot, each transmitter learns whether 0 packets, 1 packet, or

moro than one packet (c for collision) were transmitted in that

slot. This is the only information that each transmitter gets

about the existence of packets elsewhere. The assumpt ion of

immediate feedback is often unrealistic, but collision resolution

algorithms can usually be easily modified to deal with delayed

feedback; the introduction of delay in the feedback, however,

seems to greatly complicate analysis with no apparent benefit in

insight. The assumption of 0, 1, c feedback implies that the

receiver (or the transmitters themselves) can distinguish between

an idle channel and a collision, which is not always reasonable.

It also implies that idle transmitters are always listening for

this feedback, which is not always desirable. Some alternative

forms of feedback will be discussed in what follows.

4.1 SLOTTED ALOHA: The simplest form of collision resolution

strategy using the assumptions above is Slotted Aloha, due to

Roberts E273. Slotted Aloha is a variation of pure Aloha,

devised by Abramson E13, which will be briefly discussed

subsequently. In slotted Aloha, whenever a packet arrives at one

of the transmittersp, that packet is transmitted in the next slot.

Wherever a collision occurs in a slot, each packet involved in

*--** .-- '.*' * * * *a *- .. . .
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the collision is said to be backlogged arid remains backlogged

urt il it is successfully transmitted. Each such backlogged .

packet is transmitted in each slot with some fixed probability

p > 1, independent of past slots and of other packets. Note that

if p were 1, backlogged Packets would continue colliding and no .

more packets would ever be successfully transmitted. Note also

that because of the effectively infinite set of transmitters, the -

collision cannot be resolved by transmitters waiting some number 0-

of slots determined by the identity of the transmitter. Such

strategies can be used with a known set of transmitters and can

be made to behave like TDMA under heavy loading.

It can easily be seen that slotted Aloha can be analyzed as

a homogeneous Markov chain, using the number of backlogged

packets at each integer time t as the state. The state at time t C
includes packets that collided in the slot from t-l to t but does

not include new packet arrivals from t-l to t. Let k bethe

state at time t and k+i be the state at t+l. Note that i can

never be less than -1 (i.e. at most one backlogged packet can be

successfully transmitted in the slot Lt,t+lJ. Furthermore, i = -1

if no new packets arrived in Ct-lt) and exactly one backlogged

packet is transmitted in Et,t+l). This event has probability

kpC1-p)klC-. The state stays the same Ci=) either if no new

packets arrived in Ct-lt) and no backlogged packet is

successfully transmitted in Ctgt+l) or if one new packet arrived

in Et-lot) and is successfully transmitted in Et,t~l)

Analyzing the cases i > 0 in the same way, we see that the . .

state transition Probabilities Pk,k+i are given by

",...' --- S' : - ,. -.- -, '. -'-,,' -' '.-.-,., ' -'.' . -" . - S-..- -. - - - -'-" . -"-"- '- ," -" ' -" " -" " .- -. - .-. - ,
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~k-1 \=-kp( l-p -

k-i -N k -X
P k E-kp(l-p) 3 e + 1-p) Xe i = "

kc, k+i

El- C1-p) kl J.e- i = 1

ki -x -;'

)% .7 i Z 2 (4.1)

In understanding how this chain behaves, we look first at the

drift, Dkq defined as the expected value of i conditional on k"

(i.e. the expected difference between the state at t+1 and that

at t conditional on the state at t).

D = X -(-p)k Xe - X + kp(l-p) k-1e -  (4.2)

The first term X is the arrival rate and the second term is the

departure rate or throughput. Note that for any X > 0 and any

p > 0, Dk will be positive for all sufficiently large k. This

means that if the system becomes sufficiently backlogged, it

drifts in the direction of becoming more and more backlogged; F
this should not be surprising since collisions occur on almost

all slots when the backlog gets sufficiently large. Kaplan £28)

gives a simple but elegant proof that this type of chain is

unstable (i.e. non-ergodic).

Despite the instability of slotted Aloha, it can still be a

useful collision resolution approach especially if the system is

modified to avoid or recover from the heavily backlogg'4 state.

'Using a small value of p helps postpone the onset of the

....
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catastrophic behavior above, and for small p, (4.2) can be well

approximated by

Dk z >.- (X+pk)e - X + p k) 43>

Fig. 4.1 illustrates this equation. For X > *-1 , we see that *...-.

> for all k. For X < e - 1 , there is a range of k for which

Dk < 0, and the size of this range increases as X decreases and

as p decreases. Unfortunately, X is the arrival rate which we

would rather not decrease, and small p means large delay between

retrials of a collided packet.

This tradeoff in p is very undesirable; large p makes it

very easy to enter the unstable heavily backlogged region,

whereas small p causes large delay for collided packets in the

stable region. The engineering solution is almost obvious--

change p as the backlog k changes. Ideally, we would like to

adjust p to keep X + pk = 1, thus maintaining a throughput of &- I

for all k > 0. This keeps delay small when the backlog is small

and keeps the system stable if X < e-1 . The problem with this

solution is that k is unknown, and either k must be estimated

from the feedback or an apropriate value of p must be estimated.

Hajek and VanLoon t29] hae analyzed a class of algorithms in

which P is updated at each slot simply as a function of the

previous p and the feedback information. They showed that such

functions cam be chosen for any X < e-1 so as to make the

resulting system stable.

From C4.3)9 we see that Dk is positive whenever X > I/e.

This is only an approximation of (4.2), but the approximation is

. ... . . .- . .. . . -
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'good when p is small, and p must be small wthen k is large to

minimize Dk. Thus, for x> I/e, Dk is posit ive for all

sufficientlyj large k no matter how p is chosen, so that slotted

Aloha is unstable in this case even if k is known.

In the next subsection we show that much higher throughputs,

*i and presumably smaller delays, are possible when newly arrivinq

packets are sometimes held up and collisions are resolved in more

sophisticated ways. The primary advantage that slotted Aloha has L

*. over these more sophisticated strategies is that slotted Aloha

does not require all the feedback information we have assumed.

For many physical multiaccess channels, particularly dispersive

fading channels, it is difficult to distinguish an idle slot from

a collision with high reliability. It is usually

straightforward, through use of a cyclic redundancy check, to

distinguish a successful transmission from idle or collision, and

it can be seen that this kind of feedback is sufficient for

slotted Aloha but not sufficient for the more sophisticated

strategies. Unfortunately it is much more difficult to estimate

the backlog with this type of feedback and it is an open research

problem to determine whether slotted Aloha can be stabilized in

this case.

Pure Aloha C13 was the precursor of slotted Aloha and avoids

our assumption of a slotted system, although we continue to

assume that each packet requires one time unit for transmission,

that overlapping packets collide, and that assumptions c), d),

and e) hold. Each newly arrived packet is transmitted

immediately upon arrival and backlogged packets are transmitted

- * - * - * ~ * - - * . * * -* * * . - - * * * - - . * .
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after a geometrically distributed delay. The probability of

collision is higher here than in a slotted system; a p-acket

starting transmission at time t will collide with other packets

starting anywhere in the interval (t-lpt+l). The upper bound on

throughput becomes (2e) - 1 and the sa're kinds of stability issues

arise as for the slotted system. A major practical advantage of

pure Aloha, howeverg is its ability to handle packets of - .

different lengths C30,311.

4.2 SPLITTING ALGORITHMS: In our discussion of slotted Aloha, we

saw that the throughput is upper bounded by 1/e regardless of the

strategy used to adjust the retransmission probability of

collided packets. This bound was imposed by the restriction that

new arrivals were always transmitted in the next slot after their

arrival and that backlogged packets depended upon a single

parameter p for retransmission. To got an intuitive idea of why -

the transmission of new arrivals should sometimes be postponed

consider a slot in which two packets collide. If the new

arrivals were held up until the collision were resolved, then a

reasonable strategy would be for each colliding packet to

retransmit in the following slot with probability 1/2. With

probability 1/2, thon, a successful transmission occurs and the

other packet would be transmitted in the following slot.

Alternatively, with probability 1/29 another collision or an idle

slot ensues, wasting one slot. Again, in this case, each packet

would be transmitted in the following slot independently with

probability 1/2P and so forth until the two packets are

successfully transmitted. The expected number of slots required
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to successful lyj transmit the two packets is easily seer to be 3,

which yields an effective throughput of 2/3 during the collision

resolut ion period.

This concept of probabalistically splitting the set of

packets involved in a collision into a transmitting set and a

non-transmitting set while making other packets wait is the

central idea of a variety of collision resolution algorithms that

achieve throughputs larger than 1/e while using assumptions a) to

e); we call these algorithms splitting algorithms. These

algorithms differ in the rules used for splitting the collision

set (which might involve more than two packets) and in the rules

for allowing waiting packets not involved in a collision to

transmit after the collision is resolved.

The first splitting algorithms were the tree algorithms

developed by Capetanakis £32], Hayes £33], and Tsybakov and

Mikhailov [343. In these algorithms, the system alternates

between two modes--normal mode and collision resolution mode.

When a collision occurs in normal mode, all transmitters go into

collision resolution mode, all new arrivals wait until the next

transition into normal mode, and all packets involved in the

collision independently select one of two subsets with equal

probability. We view each subset as corresponding to a branch

from the root of a rooted binary tree (see fig. 4.2). In the

slot following the collision, the first of these subsets is

transmitted. If another collision occurs, this subset is

further split into two smaller subsets, corresponding to further

branches growing from the original branch. The first of these

* . . . . . . . . . . . . .
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subsets is transmitted in the the next slot, and if this

transmission is successful or idle, the second of the subsets is

transmitted in the following slot. In general, whenever the

transmission of a subset results in a collision, the subset is

split and two new branches of the tree are grown from the old

branch. Whenever the transmission of a subset is idle or-

successful (i.e. the subsetis empty or contains one packet), the

next slot is used to transmit the next subset. When all subsets

have been exhausted, the normal mode is again entered.

It should be apparent that if this algorithm spends many

slots resolving a collisionp then typically many new arrivals

will eagerly be awaiting the return to normal mode and a

resounding collision will ensue. What is even worse is that many

successive collisions will follow until the expected number of

pakets in a subset becomes on the order of 1. Thus the algorithm

can be improved by eliminating the normal mode; at the end of a

collision resolution periodp a new collision resolution period is

immediately entered and each waiting packet randomly joins one of

k subsets. The number k is chosen as a function of the length of

the preceding collision resolution period so that the expected

number of packets per subset is slightly more than one. Thus the

corresponding tree has k branches rising from the root and two

branches rising from each non-leaf node.

49T:
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lapet ainakis [:32) showed t hat this a 1gor it h a has a ra:.:: i rmium

throughput of 0.43 and is stable for all input rates less than K

0.43. The maximum throughput attainable with tree algorithms was

later increased to 0.46 due to a simple improvement first

suggested by Massey [35). Note what the algorithm does when the

set involved in a collision is split into two subsets of which

the first is empty. The first slot following the collision is

then idle and the next is a collision, involving all the packets

in the first collision. Massey's improvement was to avoid this

predictable collison by resplitting the second subset of a

collision set whenever the first subset is empty.

The next improvement in throughput was due to Gallager (36),

and somewhat later with a more complete analysis, by Tsybakov and

Mikhailov C37]; this involved eliminating the tree structure

entirely. We shall describe this algorithm precisely later,

since it is considerably easier to analyze than the tree

algorithm. First, however, we view it as another modification of

the tree algorithm. With a little thought, one can see that the

number of packets in a subset that has had a collision is a

Poisson random variable conditional on the number being 2 or

more. If-the packets in this set are randomly divided into two '-,

subsetsp then it can also be seen that if the first subset

contains 2 or more packets (i.e. another collision) then,

conditional on this, the number of packets in the second subset

is Poisson. Thus, as far as the algorithm is concerned, this

subset is statistically identical to some time interval of new

L _ ~~~...*._" z : : ,""•". "-".. .,","".......... . . ............... .
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arrivals, and the algorithm would be improved if. rather than

wasting a slot on this subset, we simply treated it like waitin g

new arrivals. We will get to the bookkeeping issue cf how. to do

this short ly., but note that if we eliminate the second subset as

a separate entity every time the first subset is divided, then we

never have more subsets to consider than we started with.

The easiest way to do the bookkeeping concerning subsets and

waiting packets is by means of the arrival times of the packetz.

If all the packets that arrived in a given time interval are

transmitted in a slot and a collision results, then the interval

is split into two equal subintervals and the packets in the first

subinterval are regarded as the first subset and those in the

second as the second subset. With this approachp packets are

always sent in a first come first served (FCFS) order, so we call

this a FCFS splitting algorithm.

We now express the algorithm precisely. Suppose that at

integer time t the algorithm has successfully transmitted all

packets that arrived before some time T (not necessarily

integer). In the slot Et,t+l), all the packets that arrived

between T and T+ are transmitted. The parameter v is determined

by all each transmitter based on the history of the feedback up

to time t. The transmitters also calculate T based on the

feedback history. It is helpful to view the packet arrivals in

ETt) as being in a distributed queue (see fig. 4.3). We would

like to allocate the queued packets one at a time starting at the

front of the queue, but the individual arrival times are unknown

except that each transmitter containing a packet knows that
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packet's arrival time. Thus the algorithm attempts to allocate

an interval v. at the front of the queue for the nes:::t slotfso as

to transmit the waiting; packets as quicklyA as possible. Note

that maximizing the probabilityj of success in the ne::t slot is

not the best thing to do since, as we have seen, a collision in

the next slot allows a higher throughput in the succeeding few

slots than is possible with an idle slot or successful slot. -"-

The algorithm given below determines the allocation interval

(.t) and head of queue time T(t) for the slot Et,t+l) in terms of

the allocation interval v(t.-1), head of queue T(t-1), and the

feedback (C,1,c) for the slot Et-l,t). There is also a binary

state Q(t) (1,2) which is a function of Q(t-1) and the feedback ':

for tt-l,t). The state Q(t-1) also enters into the determination , i -

of v.t) and T(t). Q(t) is set to 2 if the interval used in slot.

(t-1,t) has been divided by 2 for slot Ct,t+l) and is I

otherwise. Thus Q(t) is the number of subsets current 19 under

consideration. The algorithm also has a parameter p 0 that

determines the size of allocation interval to be used after a

collision resolution period is completed. For maximum

throughput, v 0 turns out to be 2.6. Note that the allocation S

interval is also limited by t-T(t). the interval of arrival times

that are still waiting for transmission.

S*,.-
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FCFS Splitting Algorithm'

if feedback = c ther,
T(t) = Tt-i ; Q(t) = 2;
.t) = U~t.-t ,"2 ,:(4.4,

if feedback = 01 or 1 and Q,'t-1) = 1 thern
T(t) = T(t-1)-',Ltt-1); Qt:) = 1;

,.t = minve ,t-T(t)] (4.5)

if feedback = 1 and Q(t-1) = 2 then
T(t) = T(t-1)+L.(t-1)J Q(t) - 1;p.(t) = W~t-1) '4. 6 :' l:::

if feedback = 0 and QOt-1) = 2 then
T(t) = T<t-1)+v<t-1); Q(t) = 2;
v (t) = Lt(t-1)e'2 (4.7) ..

In case of a collision in slot t-.,t., Eq. (4.4) splits the

allocation interval [T(t-1), T(t-1)+(t-1)) into two intervals

T(t-1), T(t-l)+a(t-l)/2) arid T(t-1)+u(t-l)/2, T(t-l)+L(t-1)).

Q(t) = 2 allows the algorithm to "remember" the existence of

these two subintervals. If there was a previous subinterval from

CT(t-1)+u(t-1), T(t-1)+2i(t-1)), the algorithm "forgets" about it

at this point, regarding that subinterval as part of the waiting

queue. Given two or more packets in CT(t-l), T(t-1)+2u(t-1)) and

two or more packets in CT(t-1), T(t-1)+W(t-1)), the number of

packets in CT(t-1)+W(t-1), T(t-1)+2m(t-1)) is e*asily seen to be

Poisson with parameter Xu(t-i).

Eq. (4.5) corresponds to the end of a collision resolution

period or a subsequent period with no collisions and simply moves

the head of the queue and allocates a new interval. Eq. (4.6)

corresponds to a successful transmission of the first subinterval

from a previous collision and movement to the second subinterval.

Finally (4.7) corresponds to Massey's improvement on the tree
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algorithm when a coil ision followed by an idle (or perhaps seveal

idles) is followed by splitting the second subinterval.

The FCFS splitting algorithm can be analy-4zed as a

homogeneous Markov chain, using Q(t), LL,:t) arid t-N(t) as the

state for integer values of t. It is simpler, however, to

analyze a single collision resolution period, starting at a t for

which i(t) = aI6 and Q(t) = 1 and ending immediately before the

next t for which u(t) = min(L 0,PN(t)-t) and Q(t) = 1. The

resulting Markov chain is then independent of Nt)-t (aside from

the initial assumption that Nt)-t v) and allows us in

principle to find the distribution of the number of slots. and

number of successful transmissions in a collision resolution

period. Note that in each update of v (aside from the beginning

of the collision resolution period), m either stays the same or

is divided by 2, so that m = 2iI in all cases for some integer

i Z 8. Thus each state of the chain can be represented as S

where j = Q~t)g-C1,2) and i is such that Lit) = 2- i. In state

2,p i (i>1), the only possible transitions are to S2,i+ 1 if an

idle or collision occurs or to S if a success occurs. From

SIt i , i Z 0, the only possible transitions are to S2,i+ i if a

collision occurs or to Sil (representing the end of the period)

otherwise (see fig. 4.4).

All that remains to complete the chain is to calculate the

transition probabilities, P2,i for a transition from S 2 ,i to

and PIi for a transition from Sli to Silo" In state 2, i we

have two subintervals each of size vi = m0 2 - i " The number of

packets in etch subinterval is a Poisson random variable with

L7.%-°
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the two subinterv..als being tw.,o or more. The transit ion to Z19

occurs i f the first. subintertval contains e>.--act hi one Packet (i e.
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the transmisL-sion of the first subinterval is successful). The

* probability of this is then

1 1
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P4 p, -2,. 148

1-e 1 +24t.)

In state Si1i i Z 1, we are about to transmit the second of

two subintervals each of size vs. The number of packets in each

subinterval is Poisson with Parameter Xi conditional both on the

sum being two or more and the first interval containing exactly

one, packet. This means that the number of packets in the second

subinterval is Poisson conditional on one or more packets in the

second subinterval. The probability of a transition to s,
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the probability that each state is entered, starting :t S

before the first return to S1 l. Noting that the successful

transrissiors correspond to the transit ions fr.omi S2 t. S, for

each i 1, transitions from S 1  to f for i -1, rind

successful transmissions directly from S to $1 0 We C a n

calculate the expected number of successful transmissions and the

expected number of slots per collision resolution interval. 7t

turns out that the ratio of these two expected values is lesz

than X for all X < 0.4871.

It can be seen from (4.9) and (4.10) that the probability of

reaching 52, i , given that S2, i1 has been reached, tends to 1/2

as i increases. Thus the number of slots and the number of

successful transmissions in a collision resolution interval both

have moment generating functions. From this, we can see that for

any starting value of t-T(t) and any X < 0.4871, the number of

slots required to reach the end of a collision resolution

interval where t-T(t) < vo also has a moment generating function

and thus the algorithm is stable for X < 6.4871.

The expected delay for this algorithm is considerably harder

to analyze than the maximum throughput. Tsybakov and Likhanov

£383 have found an upper bound on delay and more recent 1y Huang

and Berger £393 have constructed tight upper and lower bounds as

well as simulation results. The expected delay is about 5 1/2
L-

slots at X = 1/e and about 16 slots at X = 6.46.

The FCFS splitting algorithm can be improved somewhat if the

intervals are split in an optimal way after collisions. Because

of the possibility of more than two packets in a collision, equal

. . . . ..°. -
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subintervals are not quite optimal. Mosely and Humblet (403 and -

Tsybakov and Mi khaslo .. ( U37) show that choosing the opt imumj

sub i nt erva is increases t he ma.x i mum throughput to 0. 4878. I
Recent ly another improvement of 3.6 x 1 - 7 has been made by

Vvedenskaya and Pinsker [41). Although this gain is small, it is

of theoretical interest since it departs from the principal of

always resolving one collision before trying any new intervals.

Considerable effort has been spent on finding upper bounds

% to the maximum throughput that can be achieved using the ,

. assumptions a) to e> (42, 43, 44, 45, 463. The tightest bound

known is 0.587 an is due to Mikhailov and Tsybakov (46].

Pippenger's result [423 is also of particular interest since he

shows that if the amount of feedback is increased to give the ":2

number of packets involved in etch collision, then any throughput

up to one may be achieved.

One negative aspect of FCFS splitting algorithms (and also Th

Massey's improvement on the Tree algorithms) is their

susceptibility to noisy feedback. If an idle slot is mistakenly

fed back to the transmitters as a collision, then the algorithm

as stated will forever continue to split a smaller and smaller

second subinterval. This problem could be solved, of course, by

only splitting a given number of times in a row on receipt of 8

feedback and then trying the entire interval. The general

subject of noisy feedback is still not well understood, but a
• ..

number of partial results are known (35, 47, 483. The review

paper by Tsybakov C482 also reviews many variations on collision

resolution algorithms for a variety of assumptions.
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One interesting approach to noisy feedback and other

,arit ions from the ideal model above is that of developing

a1gor it hms t hat are As s imp 1 e and robust as poss i b 1 e. at hs-s and

Fl.a•jolet E49J have recently developed an algorithm with an

attractive tradeoff between simplicity and throughput. Newl y1-

arriving packets are always transmitted in. the slot after their

arrival, and backlogged packets use a ternary tree algorithm.

Massey's improvement on the tree algorithm is not used, thus

avoiding the above deadlock problems with noisy feedback;. The

resulting maximum stable throughput is 0.40. It is rather

surprising that a throughput greater than 1/e is possible while

always allc'wing new arrivals to transmit in the next slot.

For multiaccess systems with a finite number of users, it is

also of interest to modify these splitting algorithms so as to

take advantage of the finite number of transmitters and to make a

graceful transition from collision resolution to TDMA as the

arrival rate increases. Specific approaches to this are

discussed in C50,513. The approach in [513 is also of interest

because of drawing a parallel between splitting algorithms and

group testing, as developed in the statistics community in the

40's and 501s.

-I ':.
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4.3 CARRIER SENSING: We now want to chanae the basi-

assumptions a, to e). Note that in manY mul tiac:ue-.

Such as 1 -c-al networks, the tran-mi i: ers can ltr .c::er

the other transmitters are sending anyLhinq. In such a

situtation, it makes sense to give up the strict slotting

specified in assumption a). and assume instead that i

transmitter can start to send a packet in the middle of a

data slot if no other transmitters are currently sendir--.

This change is far more important than simply allowi in idle

slots to be used more efficiently. since now oackets :ar.

start at different minislot times, thus avoiding many

collisions.

Let a be the time required for all sources to determine

that nothing is being transmitted; ie. c is the sum of the

maximum propagation delay between sources and the time

required by a receiver to reliably distinguish between

signal and no signal. Asiume that c( time units after the

beginning of a slot, if nothing is being transmitted in that

slot, then the slot terminates and a new slot begins. Thus

idle slots (sometimes called minislots) last for a time

units and slots with one or more packets last for 1 time

unit as before. We still assume that all packets require

one time unit for transmission, that feedback is

instantaneous at the end of a slot, that arrivals are

Poisson with intensity A, and that there are effectively an

infinite number of sources. We first modify slotted Aloha

for this new situation and then modify the FCFS splitting

_. 4, - ' 4 ' 4* * * **. .,. . . .. .
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a l ori thin. Thesa !:ec:hniQuE!-. ar e ld crri, r sen.-

Mun.t:iple (CSMA)., althoucph 0 do ,o imp I' .. ue,

o+ a c-arr:iL ,- but .impl,,?' the .L.i1. i. L, tu qui. Ck] *, -h

use of the channel by another transmitter.

We can model this situation in almost the sa,',a way as

before. The only difference is that idle slots now last for

a duration ,.(, whereas successful and collision slots each

last for one unit of time. For slotted Aloha, if a new

packet arrives at a transmitter when an idle minislot is in

progress, the packet begins transmission at the end of that

minislot (thus turning the next slot into a full slot). If

a transmission is in progress, the packet is regarded as a

backlogged packet and begins transmission with some given

probability p after eacn idle minislot. This technique was

called non-persistent CSMA in the original description E523;

in an inferior. persistent. variaton, all transmission

attempts during a busy slot would simply be transmitted at

the end of that slot, thus causing a collision with a rather

high probability. We ignore this alternative form in what

f ol lows.

To analyze CSMA, we can use a Markov Chain again, using

the number of backlogged packets as the state and the ends

of minislots as the state transition times. Rather than

write out the state transition equations, which are not

particularly insightful, we simply modify the drift in (4.2)

for this new model. The expected number of arrivals in the

minislot before the transition is Aa, and with probability

S...-..
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, , this mini-slot is followed b,.- A -ull slat with .

be ..

e:ected arrivals. Note that there is a--ai .n unused,

a:in Lis- :t at the end of each ful . sl ot but t;he arrivals in

that minislot are considered as part n.1 the following

transition. The model could be changed to eliminate this

wasted minislot, but the difference is negligible for small

1'. The expected number of departures per state transition

is simply the probability of a success.Thus

Dk. = , + .[l-e - '(1-p)
k  - [EA+pk/(1-p)]e-' (l-p)

(4.11)

This is minimized over p at

1 - ~(1+C)

k - A(1+a) (4.12)

The stability issues with CSMA slotted Aloha are almost

the same as with ordinary slotted Aloha. One can control p

by monitoring the feedback, or one can simply operate at a

small value of A and p and hope that the backlog never

becomes too large. If we use the optimal value of p for each

k, and substitute this in (4.11), we find that D is

negative for all k so long as

Se-lA (4.13)

By expanding this in a power series for small a', we

find that the system is scable for all A less than 4' . The

-, 0optimal value of p then satisfies pk o ff. It is

.9]
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intaorestinq to observe thst this optimal po:int ofzcttr wh er e

the time spent on idle mniilots is approximately eju.l to

that spent on col'tisions; naturally there are many ;e

idle slots than collisions, but idle slots have a much

shorter duration. Delays also tend to be much smaller in a

CSMA system since backlogged packets get a transi ,ssion

opportunity every minislot, and, althouqh the probability of

transmitting in a minislot decreases with 4', the

probability of transmitting per unit time increases as 1/ 4.

Next consider CSMA with pure Aloha. We will not

analyze this in detail, but note that with the same carrier

sensing time a and the same transmission probability p, the

probability of collision increases by a factor of 2. This

means that p should be decreased by a factor of f2 for

maximum throughput, and thus the unslotted system has a

maximum throughput of 1-2-. for small L.. We see that the

difference between pure and slotted Aloha for CSMA is quite

small for small a, and the synchronization required for

slotting with CSMA is somewhat trickier than that for

ordinary slotted Aloha. Thus pure Aloha appears to be the

natural choice with CSMA.

Finally consider the FCFS splitting algorithm modified

for CSMA. The same algorithm as in (4.4) to (4.7) can be

used, although the parameter vO should be chanqed. and as we

shall see shortly, intervals with collisions should not be

split into equal subintervals. Since collisions waste much

more time than idle minislots, the basic allocation interval

S.- .-
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should be chosen very sinall. Thi eans in tjr,., t;t

-1llsions with -ore than two pacA:re.s are ineqliqi :i e -t i- e

analysis of the alqorithm, and thus t. analysis is 'i;uch

simpler than before.

As before we find the expected tine and the expectepd

number of successes in a collision resolution period,

including a single idle or successful slot as a deqenerate

case of a collision resolution period. Let ,p = AvO0 With

probability e , an original allocation iriterval is empt-,.

yielding a collision resolution time of ,:( with no successes.

With probability ,e-9f, there is an initial success, yielding

collision resolution time 1+lz (as before, we include an

empty minislot at the end of each full slot). Finally, with

probability (y /2)e -' , there is a collision yielding a

collision resolution time of I+T, for some T to be

calculated later. and two successes. Thus,

E(time/period) - ce -el + #11+c)e -  + (I+T)(, 2/2)e - e "

(4.14)

E(packets/period) c- ye- f + 2(1f2/2)e - " (4.15)

,.7-

Note that we have used the approximation that only two

packets occur in collisions here. As before, the maximum

throughput that can be achieved is the ratio of (4.15) to

(4.14),

'max O ' + ',)/ [E + '(1+a) + (Y 2/2) (1+T)] (4.16).

.°= ................................................ ...... . ••. .. ..
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We can now maximize the right hand side of (4.1.6) over +

(I e. oiver P-o. In the I i uni t of smal L c(,~ we qe-t tha

asymptotic expressions

42cc/(T-1) (.7

A 1~ fli (4.16)D

Finally we must calculate T, the time to resolve a

collision after it has occurred. Let x be the fraction of

an interval used in the first subset when an interval is

split. T includes the time ac for the idle minislot that

always follows a collision. If the next minislot is idle, ac

is the duration of the minislot, and T-cc is the expected

time still remaining to resolve the collision. Similarly,

if another collision occurs, 1+T is the expected time for

resolution. Finally, if a successful transmission occu~rs.

2(1+a~) is the required time for resolution. Thus

T a + (1-X) 2 T + x 2 (+T) + 4x (1-x)(<1+c() (4.19)

T is minimized by x =4cc+aac - ac, and the resulting

value of T9 for small a, is T a 2+47. Substituting this in

(4.18), we see that

A max 1 -42ac (4.20)

For small cc, then, the FCFS splitting algorithm has the
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same maximum throughput as slotted Aloha. This is not

SLArprisin., since without CSMA, the major :advantaqe ;-t the

FCFS algorithm is its efficiency in resolvin co1lisions,-

and with CSMA, collisions rarely occur. It is somewhat

surprising at first that if we use the FCFS algorithm with

equal subintervals (ie. x=1/2), then we are limited to a

throughput of 1-43c. This degradation is due to a

substantial increase in the number of collisions.

The same type of analysis as used here can be used for

reservation multiaccess systems and a variety of other

S conditions. The idea, originally due to Humblet C533 is to

generalize our original assumptions a) to e) to allow the

durations of idle, success, or collision slots to all be

different. Recmll that in CSMA. idle slots had duration a-

and success and collision slots had duration 1+a. In a

reservation system, idle and collision slots would have the

duration required to send a reservation packet, whereas

success slots would have the duration required for both a

reservation and a message transmission.

....................................... ...... ..... . .
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